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Risk of AIS 2+ Injury in Different Restraint 
Environments (NASS/CDS 1993-2001)
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Annual LLI per 100 Front Seat Occupants in different 
Restraint Environments (NASS/CDS 1993-2001)
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Risk of KTH injuries of restrained occupants by air bag 
presence (NASS/CDS 1993-2001)
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Risk of KTH Injuries in air bag equipped vehicles by 
vehicle model year (NASS/CDS 1993-2001)
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FMVSS 208 and NCAP Test Data
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FMVSS 208 (unrestrained HIII dummy in 48 km/h frontal crash)
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Inertial Effects on Loading of the KTH Complex
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UMTRI Hip Tolerance Testing
Schematic of test fixture
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Typical loading rates in FMVSS 208 tests are 
also less than 300 N/ms while the loading rates
in previous research were 400-3000 N/ms.
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Femur Tolerance Testing
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• Same apparatus as hip tolerance tests.

• Same specimens as those used in the hip 
tolerance tests with hip disarticulated and 
the head of femur inserted in an acetabular cup
fixed to the support.



Femur Tolerance Testing
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Results of impact tests
• Neutral posture hip fracture tolerance is 5.7±1.4 kN
• Femur fracture tolerance is 7.6 ± 1.6 kN
• Femoral neck is the weakest part of the femur.
• Using the displacement of the ram and the force 

applied at the knee, 
• The stiffness of knee-thigh-hip complex is 233 N/mm
• The stiffness of knee-femur complex is 370 ± 80 N/mm
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Stiffness of Human Cadaver Knee/Femur complex at 
loading rates seen in 30 mph frontal crashes (FMVSS208)
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Most of the knee-femur axial compliance is due to 
femur bending rather than the compliance at the 
knee joint.
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Hybrid III Knee-thigh-hip Complex
• Hybrid III knee-thigh stiffness based on fixed femur skeletal 

response of knee+distal femur sections by Horsch and Patrick 
(1976).

• Compliance of knee padding was selected such that HIII 
knee+distal femur response matches the Horsch-Patrick data

• Donnelly and Roberts (1987) found the Hybrid III to produce 
three times greater force than cadaveric subjects in whole-
body knee impact tests.
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Thor Knee-thigh-hip Complex
• To better match Donnelly and Roberts data, Thor has a 

compliant element in the mid femur and redistributes some of 
the thigh mass to the flesh.

• The knee design is similar to the Hybrid III knee with similar 
impact response characteristics.  It has rigid hemispherical 
knee caps intended to provide more human-like interaction 
with the knee bolster.
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Knee-femur compliance of Hybrid III, Thor and cadaver 
in molded knee interface loading at rates similar to that 
seen in 30 mph frontal crashes
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Initial stiffness (1800 N/mm) of HIII knee-femur is due to 
compression of knee padding.  After about 2 mm, the HIII stiffness 
increases to 8100 N/mm, which reflects the rigidity of the femur
and the limited compliance offered by knee padding.
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Compliance of ATDs at typical loading rates 
seen in FMVSS 208 frontal crashes

Thor Knee/Femur Compliance = 
3 X Cadaver Knee/Femur compliance

Hybrid III Knee/Femur Compliance = 
16 X Cadaver Knee/Femur Compliance

The Thor has a less stiff force deflection response 
than the Hybrid III dummy due to the compliant element 
in the Thor femur 
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Biofidelity of ATDs
• Biofidelity of an ATD’s knee-thigh complex depends 

on knee/femur stiffness, as well as inertial 
contributions of the knee/femur complex and other 
body regions.   

• In order to address mass-coupling issues, knee 
impacts to whole body cadavers and ATDs (free back 
condition) will be conducted.

• Though the Thor knee-femur stiffness is 3 times 
greater than that of human cadavers, its response 
under dynamic knee loading, such as in frontal 
crashes, may be similar to that of human cadavers.   
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New Knee Bolster Designs

With the advent of new knee bolster designs, such as inflatable
bolsters, the biofidelity of the knee-thigh-hip complex of the ATD
and appropriate injury criteria will become crucial to 
ensure adequate protection for the KTH complex in frontal crashes.


